April 28, 2019

¿Que estoy leyendo? Información útil para mejorar la presencia online

Recientemente re-abri mi blog con la intención de construir un perfil acádemico e incluir  las lecturas cientificas que realizo de forma periodica para manterme actualizado sobre el desarrollo de materiales semiconductores de película delgada. 

Redacción del blog y muestra de una anotación realizada de una tesis doctoral sobre desarrollo de kesteritas

La idea de compartir la revisión de literatura surge de la experiencia personal en manejo de información del material científicos leído. De forma personal el proceso que yo sigo es el siguiente:  
  • Búsqueda de contenido
  • Descargar artículo cientifico y guardar en la computadora 
  • Leer con un lector de PDF o un organizador de artículos como MENDELEY
  • Resaltar las secciones interesantes y hacer notas personales
  • Compartir y discutir los descubrimientos con los compañeros del grupo de trabajo 
    • Nota: La discusión se encuentra en función del numero de participantes del grupo de trabajo con tema afín, en caso de no contar con compañeros es indispensable discutir con el mentor o investigador principal a cargo.
Todo este proceso se lleva acabo de forma física y personal. Esto quiere decir que el archivo de notas y los artículos descargados quedan resguardados de forma física en la computadora personal o en la proporcionada por la  institución. La información corre el riesgo de desaparecer, claro esta que el conocimiento adquirido se mantendrá en cada uno de nosotros. Esto ultimo no se juzga, pero estamos aquí para hablar sobre ¿Que estoy leyendo?.

Obviamente, siguiendo la moda en curso sobre las redes sociales. Mencionar a nuestros pares académicos o dar la oportunidad de que ellos conozcan cual es la literatura que nos encontramos leyendo demuestra que estamos activos consumiendo contenido científico y  por lo cual estamos actualizados respecto al tema de interés. A mi parecer esta es una forma de construir un perfil académico. La cuestión ahora es ¿Como lo hacemos?


April 25, 2019

Paper: Identifying the Real Minority Carrier Lifetime in Nonideal Semiconductors: A Case Study of Kesterite Materials

Title: Identifying the Real Minority Carrier Lifetime in Nonideal Semiconductors: A Case Study of Kesterite Materials
Authors: Charles J. Hages,* Alex Redinger, Sergiu Levcenko, Hannes Hempel, Mark J. Koeper, Rakesh Agrawal, Dieter Greiner, Christian A. Kaufmann, and Thomas Unold*
Link: Adv. Energy Mater. 2017, 1700167 (Cited by 16)



Abstract:

Time‐resolved photoluminescence (TRPL) is a powerful characterization technique to study carrier dynamics and quantify absorber quality in semiconductors. The minority carrier lifetime, which is critically important for high‐performance solar cells, is often derived from TRPL analysis. However, here it is shown that various nonideal absorber properties can dominate the TRPL signal making reliable extraction of the minority carrier lifetime not possible. Through high‐resolution intensity‐, temperature‐, voltage‐dependent, and spectrally resolved TRPL measurements on absorbers and devices it is shown that photoluminescence (PL) decay times for kesterite materials are dominated by minority carrier detrapping. Therefore, PL decay times do not correspond to the minority carrier lifetime for these materials. The lifetimes measured here are on the order of hundreds of picoseconds in contrast to the nanosecond lifetimes suggested by the decay curves. These results are supported with additional measurements, device simulation, and comparison with recombination limited PL decays measured on Cu(In,Ga)Se2. The kesterite material system is used as a case study to demonstrate the general analysis of TRPL data in the limit of various measurement conditions and nonideal absorber properties. The data indicate that the current bottleneck for kesterite solar cells is the minority carrier lifetime.

Highlights:
  • PL decay times or TRPL do not correspond to the minority carrier lifetime for CZTSe
  • Processes which influence the TRPL decay are: 
    • Radiative and nonradiative recombination
    • Surface recombination
    • Carrier drift in an electric field
    • Absorber inhomogeneity
    • Material degradation
    • Minority carrier trapping  (capture and emission)
  • For kesterites, the connection between PL time decay and the assumed minority charge lifetime is not apparent. (For CdTe technology is correlated)
  • V-TRPL: In contrast to CIGSe the TRPL data of kesterites shows no dependence on voltage.  
Characterization techniques:
  • Steady-state PL (photoluminescence)
  • TRPL - Time-resolved photoluminescence is used to study carrier dynamics and quantify absorber quality in semiconductors: (Minority carrier lifetime and charge carrier density)
  • Intensity-dependent TRPL
  • Voltage-dependent TRPL
  • Temperature-dependent TRPL  

April 24, 2019

Video: Analysis of techniques for measuring carrier recombination lifetime


Author:  Dr. Richard K. Ahrenkiel is a Research Professor of Metallurgical and Materials Engineering at the Colorado School of Mines in Golden, Colorado.

Abstract

Rapid, accurate and contactless measurement of the recombination lifetime is a very important activity in photovoltaics. The excess carrier lifetime (Δn(t)) is the most critical and variable parameter in the development of photovoltaic materials. Device performance can be accurately predicted from the lifetime measurement of the starting material. However, there is no single measurement that directly measures the bulk lifetime as all measurements are based on a device model.

A primary issue is that the lifetime is a function of excess carrier lifetime, and measurements must be linked to an injection level. The most common measurements are based on either photoconductive (PCD) or photoluminescence (TRPL) decay. PC decay senses the product of excess carrier concentration (Δn) and mobility (μ (Δn)). This mobility variation must be included in order to extract the true excess carrier lifetime. TRPL works best for direct band gap materials and therefore is not applicable to silicon. For polycrystalline materials, shallow traps distort the measurement and must be included in the analysis of the data. Finally, surface and interface recombination have a profound influence on most measurements and must be minimized for accurate measurement of the true bulk lifetime.


Both techniques and analysis methods will be discussed in this seminar. Typical sample measurements will be shown, including representative thin film and wafer materials that are currently popular in the photovoltaic community.

Richard Keith Ahrenkiel (2013), "Analysis of Techniques for Measuring Carrier Recombination Lifetime," https://nanohub.org/resources/19884

April 23, 2019

Paper: Complex Interplay between Absorber Composition and Alkali Doping in High-Efficiency Kesterite Solar Cells

Title: Complex Interplay between Absorber Composition and Alkali Doping in High-Efficiency Kesterite Solar Cells
Authors: Stefan G. Haass,* Christian Andres, Renato Figi, Claudia Schreiner, Melanie Bürki, Yaroslav E. Romanyuk, and Ayodhya N. Tiwari
Link (Open Acess): Adv. Energy Mater. 2018, 8, 1701760

Abstract:
Sodium treatment of kesterite layers is a widely used and efficient method to boost solar cell efficiency. However, first experiments employing other alkali elements cause confusion as reported results contradict each other. In this comprehensive investigation, the effects of absorber composition, alkali element, and concentration on optoelectronic properties and device performance are investigated. Experimental results show that in the row Li–Na–K–Rb–Cs the nominal Sn content should be reduced by more than 20% (relative) to achieve the highest conversion efficiency. The alkali concentration resulting in highest device efficiencies is lower by an order of magnitude for the heavy alkali elements (Rb, Cs) compared to the lighter ones (Li, Na, K). Utilization of a wide range of characterization techniques helps to unveil the complex interplay between absorber composition and alkali doping. A ranking of alkali for best device performances, when employing alkali treatment, resulted in the order of Li > Na > K > Rb > Cs based on the statistics of more than 700 individual cells. Finally, a champion device with 11.5% efficiency (12.3% active area) is achieved using a high Li concentration with an optimized Sn content.

Highlights:
  • Best published solar cell CZTSe: 12.6 % by IBM and DGIST (0.4 - 0.5 cm2 active area)
  • Solution process deposition technique [14]
  • The secondary phase Sn(S,Se)2 can be identify from XRD when Sn nominal content is > 33.3% 
  • The formation of the second phase tin selenide is influenced by the type of concentration of alkali elements 
  • Minority carriers trapping, surface effects and energetic relaxation of carriers has been identified to severely affect the PL transition times. Thus the measurement of transition decay times does not represent the real minority carriers lifetime in the kesterite absorber layer. 
    • The champion solar cell has high Li content (3.3%) and 33.3% of Sn nominal concentration of 33.3 %.  11.55 % with metal electrodes and 12.3 without a metal grid. Area = 0.29 cm2. 
  • A ranking of best device performances employing alkali treatment resulted in the order of Li > Na > K > Rb > Cs based on the statistics of more than 700 individual cells. 
Characterization techniques: 

 Material 
  • ICP-MS (Inductively coupled plasma-mass spectroscopy), detect alkali content in the absorber layer.
  • SEM (Scanning electron microscopy)
  • XRD (X-ray diffraction): To understand the device performance reduction at high Sn content
  • XRF (X-ray fluorescence)
Solar cell 
  • JV (current-voltage)
  • C-V (capacitance-voltage): Apparent carrier concentration and depletion region width.
  • TRPL (Time-resolved photoluminescence): 639 nm pulse diode laser , 90ps pulse width and 10 MHz 
  • EQE (External quantum efficiency)

April 22, 2019

Paper: How small amounts of Ge modify the formation pathways and crystallization of kesterites

Ge incorporation on Kesterites

Title:
How small amounts of Ge modify the formation pathways and crystallization of kesterites
Authors: S. Giraldo, E. Saucedo, M. Neuschitzer, F. Oliva, M. Placidi, X. Alcobe´, V. Izquierdo-Roca, S. Kim, H. Tampo, H. Shibata, A. Pérez-Rodríguez and P. Pistor

Link: Energy Environ. Sci., 2018, 11, 582-593

Abstract: 


The inclusion of Ge into the synthesis of Cu2ZnSn(S,Se)4 absorbers for kesterite solar cells has been proven to be a very efficient way to boost the device efficiency in a couple of recent publications. This highlights the importance to elucidate the mechanisms by which Ge improves the kesterite solar cells properties to such a large extent. In this contribution, we first show how controlling the position and thickness of a very thin (10–15 nm) layer of Ge greatly influences the crystallization of kesterite thin films prepared in a sequential process. Typically, Cu2ZnSnSe4 (CZTSe) films form in a bi-layer structure with large grains in the upper region and small grains at the back. By introducing Ge nanolayers below our precursors, we observe that large CZTSe grains extending over the whole absorber thickness are formed. Additionally, we observe that Ge induces fundamental changes in the formation mechanism of the kesterite absorber. In a detailed analysis of the phase evolution with and without Ge, we combine the results of X-ray fluorescence, X-ray diffraction, and Raman spectroscopy to demonstrate how the Ge influences the preferred reaction scheme during the selenization. We reveal that the presence of Ge causes a large change in the in-depth elemental distribution, induces a stabilizing Cu–Sn intermixing, and thus prevents drastic compositional fluctuations during the annealing process. This finally leads to a change from a tri-molecular towards, mainly, a bi-molecular CZTSe formation mechanism. Kesterite thin films with surprisingly large crystals of several microns in diameter can be fabricated using this approach. The results are related to the increase in device performance, where power conversion efficiencies of up to 11.8% were obtained. Finally, the consequences of the disclosed crystallization pathways and the extension to other chalcogenide technologies are discussed

Highlights:

  • Kesterite solar cell record efficiency of 12.6% (2018) [1]
  • Advantages like earth abundant and non-toxic materials of CZTSe will success if the technology reaches 20% efficiency and be ready for industrial manufacturing. 
  • Disadvantages: Low Voc (Open circuit voltage is an indirect measurement of the recombination process of the solar cell, following Shockley design). 
    • Potential fluctuations
    • Band tailing
    • Disorder defects 
    • Interface recombination 
    • Secondary phases 
    • Compositional inhomogeneities
  • The presence of Ge drastically modifies the reaction pathway in which the kesterite is formed
  • The beneficial effects of Ge incorporation are not limited to some surface modifications it affects the whole bulk of the absorber. 
  • The observed improvement should be located on the absorber bulk due to an increase in the charge carrier lifetime. 

Characterization Techniques:

  • Materials
    • SEM (5 keV) 
    • Thickness by SEM (2µm of the absorber layer)
    • EDX (20 kV)
    • XRS (Brag-Brentano configuration, 4-145º, step 0.017º, )
    • Raman (excitation wavelengths: 633 nm, 532 nm, 488 nm )
    • XRF (X-ray fluorescence) to determine overall composition and thickness
  • Solar cell
    • JV curve (Standard parameters)
    • EQE (Increase due optimization at the bulk of the absorber)
    • Voc vs T  (Activation Energy of recombination process)

Relevant information:

  • Heat treatment to induce grain growth is crucial for a better solar cell. Then Ge assisted crystallization process affect the whole bulk absorber. 
  • Goal: Increase Voc on the device is the challenge to increase efficiency > 12%. 
  • Goal: Detect the dominant recombination mechanism.


Disclaimer: The intention of this post is to bring some personal notes of the literature review. I'm not sharing the PDF files. For that purpose, please ask the authors or follow the link to the journal. 

Review of the STARCELL project publications

 This project is developed in the European Union due to photovoltaics is one of the main technologies necessary to achieve the targets of EU Energy Roadmap 2050.  For me, it is interesting to know the state of the art of this material as a prospect for a postdoctoral stay in 2019-2020.

  • This topic is highly related to solar cell development and innovation.
  • One key feature is the development of thin film photovoltaics using flexible substrates



Webpage Snapshot (April 22nd, 2019) - STARCELL Project 

STARCELL aims to substitute two critical raw materials (In and Ga) used in conventional thin film photovoltaic (PV) technologies, via the introduction of sustainable kesterite (Cu
2ZnSn(S,Se)4 - CZTSSe) semiconductors. (Project STARCELL Objective)

Publications:


[1] S. Giraldo, E. Saucedo, M. Neuschitzer, F. Oliva, M. Placidi, X. Alcobé, V. Izquierdo-Roca, S. Kim, H. Tampo, H. Shibata, A. Pérez-Rodríguez, P. Pistor, How small amounts of Ge modify the formation pathways and crystallization of kesterites, Energy Environ. Sci. 11 (2018) 582–593. doi:10.1039/c7ee02318a. (Link)(Cited by 22)

[2] S.G. Haass, C. Andres, R. Figi, C. Schreiner, M. Bürki, Y.E. Romanyuk, A.N. Tiwari, Complex Interplay between Absorber Composition and Alkali Doping in High-Efficiency Kesterite Solar Cells, Adv. Energy Mater. 8 (2018) 1–9. doi:10.1002/aenm.201701760. (Link) (Cited by 11)


[3] C.J. Hages, A. Redinger, S. Levcenko, H. Hempel, M.J. Koeper, R. Agrawal, D. Greiner, C.A. Kaufmann, T. Unold, Identifying the Real Minority Carrier Lifetime in Nonideal Semiconductors: A Case Study of Kesterite Materials, Adv. Energy Mater. 7 (2017) 1–10. doi:10.1002/aenm.201700167. (Link) (Cited by )


[4] J. Márquez, H. Stange, C.J. Hages, N. Schaefer, S. Levcenko, S. Giraldo, E. Saucedo, K. Schwarzburg, D. Abou-Ras, A. Redinger, M. Klaus, C. Genzel, T. Unold, R. Mainz, Chemistry and Dynamics of Ge in Kesterite: Toward Band-Gap-Graded Absorbers, Chem. Mater. 29 (2017) 9399–9406. doi:10.1021/acs.chemmater.7b03416. (Link

April 21, 2019

Un poco de historia - Jesús Capistrán

Me gradúe como doctor en Ingenieria en Agosto de 2017 con el tema "Celdas Solares de películas delgadas de Ag-Sb-S "proyecto de investigación en el cual se propone el desarrollo del semiconductores de película delgada sulfuro de antimonio plata (AgSbS2) con la intensión de brindar valor a agregado a la minería de plata y antimonio de nuestro país. Ademas, el proyecto contribuye como una propuesta para al desarrollo de tecnología para el aprovechamiento de la energía solar.

Al egresar del doctorado tuve la oportunidad de participar en un proyecto de innovación tecnológica del Centro Mexicano de Innovación en Energía Solar (www.cemiesol.com), para la investigación y desarrollo de celdas solares apartir de calcogenuros de antimonio (Sb-S-Se). Al final del proyecto (4 años con una inversión aproximada de 20M de pesos ) el grupo de trabajo del proyecto 35 liderado por el Dr. Karunakaran Nair (pkn@ier.unam.mx) demostró la funcionalidad de la tecnología mediante prototipos de celdas solares y mini-modulos funcionales con eficiencia de conversión de 6.2% y 4% respectivamente. [1]




Prototipos funcionales de mini-módulos fotovoltaicos
Prototipos funcionales de módulos fotovoltaicos con 6-7 celdas conectadas en serie. Desarrollados por evaporación térmica (PVD) de fuentes de calcogenuro Sb-S-Se .


Referencias
[1] P.K. Nair, E.A.Z. Medina, G.V. García, L.G. Martínez, M.T.S. Nair, Functional prototype modules of antimony sulfide selenide thin film solar cells, Thin Solid Films. 669 (2019) 410–418. doi:10.1016/j.tsf.2018.11.019

April 20, 2019

Certificado - Mejora tu velocidad para codificar en VS-Code

Certificado obtenido al finalizar el curso gratuito en Udemy, esta información es de mucha utilidad para quienes deseen mejorar su habilidad  utilizando el entorno Visual Estudio Code. El profesor es Fernando Herrera analista de sistemas y desarrollador web. Enlace al curso (Gratuito) 



La plataforma Udemy nos permite mantenernos actualizados en temas variados y poder comprobar la capacitación continua mediante los certificados adquiridos. Solo debemos recordar que Udemy no es una entidad acreditada de manera oficial. 

April 19, 2019

Estancia posdoctoral: ¿Nacional o Internacional?



El dilema actual que estoy viviendo al egresar del posgrado en Ingenieria en Energía de la UNAM (México) es encontrar un lugar en el cual desarrollarme profesionalmente como investigador. De acuerdo a la tradición académica, es necesario realizar un par de estancias posdoctorales en un instituto o centro de investigación distinto al cual se obtuvo el grado de doctor para que en un futuro pueda obtener una plaza de profesor-investigador a tiempo completo.
Estancia posdoctoral nacionalVincular a los doctores en ciencias al sector académico y de investigación para fortalecer las líneas de generación y/o aplicación al conocimiento, así como la docencia de los programas de posgrado nacionales.
Dentro de las opciones para realizar un posdoctorado nos encontramos con el apoyo que brinda CONACYT (Consejo Nacional de Ciencia y Tecnología de Mexico ). El 25 de Marzo  se abren las convocatorias para estancias posdoctorales y con fecha limite del 17 de Mayo de este año 2019. Es importante señalar que estas convocatorias dan preferencia  a doctores egresados en en sus primeros tres años despues de haberse graduado. Sin embargo, estipula que no limita a los aspirantes con mayor antigüedad.
Estancia posdoctoral al extranjero: Su finalidad es apoyar al capital humano de alto nivel con deseos de continuar su formación permitiéndole situarse en la frontera del conocimiento y la innovación para poder competir en los circuitos internacionales. 
Cualquiera de las dos opciones expuestas con anterioridad pretenden que el aspirante aplique sus conocimientos para  fortalecer al grupo de investigación que lo recibe y continuar su propia formación. Un detalle importante que  se el aspirante debe tener cuenta que la estancia posdoctoral le  permitirá encontrar su futura linea de investigación tanto en temas de ciencia pura como de  innovación tecnológica. 

En mi opinión creo que la decisión a tomar se encuentra en función aquello que se quiere aprender o experimentar para lograr una linea de investigación nueva. Como resultado se debe inteactuar y beneficiar al sector productivo para lograr fomentar el bienestar de la sociedad.

April 18, 2019

Introduction 2019

For those who don't know me let me write a short introduction. "I am Jesús Capistran who major in Electromechanical Engineering from ITZ, and I obtain a Master and Ph.D. degree at UNAM in the area of Energy Engineering. During my first work at CEMIE-Sol (www.cemiesol.mx), I participate in the development of photovoltaic technology using minerals which are earth-abundant and occur here in Mexico like antimony sulfide and others.

As the innovation word come to my life during 2017-2019 at CEMIE-SOL project 35, my colleges and I found the Spin-OFF call "Solar Semiconductors Morelos" intending to bring the science done on the laboratories to the real world with a couple of products related to thin film coatings. Right now, with that experience, I'm looking for the next big thing a  postdoctoral research position or a fulltime job where I wish to put in practice all the knowledge I obtain in the innovation and renewable energy sector.

Today, I reset my personal blog with the intention to turn this space in a logbook where I'll be able to share curated content related to science and technology. Please feel free to ask about the content. I want to share my knowledge and experience with you. I think this is the right way to build useful information.