Showing posts with label programming. Show all posts
Showing posts with label programming. Show all posts

January 12, 2020

How to add math on your blog : MathJax + Blogger


This tip is useful for engineering and science bloggers who want to share their knowledge on the web. Here is the way I found. I recently tested it on the blogger system,  the purpose is to share science tutorials with you using the correct math way.

Let's do it!

Draft on paper of the Debye-Scherrer equation for crystal size calculation 


Step 1:
Add a new gadget to your blog and copy and paste the following script.

<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>


Step 2: Write code in a new post following using latex language inside:
  • Inline \( latex code here \)
  • Paragraph  \[ latex code here \]

Step 3: Equation test: Debye -Scherrer  for crystal size calculation
\[ D(\text{nm}) = \frac{0.9 \lambda}{\beta\cos{\theta}} \]
  • D: Crystal size 
  • \(\lambda\) : 0.15406 nm  X-Ray wavelength 
  • \(\beta\) :  FWHM in radians (Full width at half maximum)  
  • \(\theta\) : Angle location of the peak in radians. 
If you have any questions, please comment on the post.

Samples from : https://www.mathjax.org/#samples



  • The Quadratic Formula
\[ x = {-b \pm \sqrt{b^2-4ac} \over 2a} \]

  • Cauchy's Integral Formula
\[ f(a) = \frac{1}{2\pi i} \oint\frac{f(z)}{z-a}dz \]

  • Angle Sum Formula for Cosines
\[ \cos(\theta+\phi)=\cos(\theta)\cos(\phi)−\sin(\theta)\sin(\phi) \]

  • Gauss' Divergence Theorem
\[ \int_D ({\nabla\cdot} F)dV=\int_{\partial D} F\cdot ndS \]

  • Curl of a Vector Field
\[ \vec{\nabla} \times \vec{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \mathbf{i} + \left( \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) \mathbf{j} + \left( \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \mathbf{k} \]

  • Standard Deviation
\[ \sigma = \sqrt{ \frac{1}{N} \sum_{i=1}^N (x_i -\mu)^2} \]

  • Definition of Christoffel Symbols

\[ (\nabla_X Y)^k = X^i (\nabla_i Y)^k = X^i \left( \frac{\partial Y^k}{\partial x^i} + \Gamma_{im}^k Y^m \right) \]

April 20, 2019

Certificado - Mejora tu velocidad para codificar en VS-Code

Certificado obtenido al finalizar el curso gratuito en Udemy, esta información es de mucha utilidad para quienes deseen mejorar su habilidad  utilizando el entorno Visual Estudio Code. El profesor es Fernando Herrera analista de sistemas y desarrollador web. Enlace al curso (Gratuito) 



La plataforma Udemy nos permite mantenernos actualizados en temas variados y poder comprobar la capacitación continua mediante los certificados adquiridos. Solo debemos recordar que Udemy no es una entidad acreditada de manera oficial.