Showing posts with label thin film. Show all posts
Showing posts with label thin film. Show all posts

December 12, 2019

AFM Training - Tip functions

Responsible research: Dr. Francisco Flores 
Day: 2 

Today I observe how a point for AFM is changed: We need to choose it depending on the material and the measurement we want to perform. For example, the sample of today is gold nanoparticles over a glass substrate then we have tried the TAP300Al-G which is a probe from the company BudgetSensors. This probe is designed for AFM in Tapping mode and is coated with reflective aluminum. 

From the company BudgetSensor, we can discover the function of the tip models: 

  • No coating: is designed for topography purpose 
  • Backside aluminum coating: is designed to enhance the laser reflectivity and ensure stable measurement form highly reflective surfaces. 
  • Backside Gold coating (inertness):  is designed for stable reflection measurement in liquids. 
  • Overall coated Gold: is designed and used for Biological Samples and aggressive chemical ambients. Often use for TIP functionalization.  
  • Cr and Pt coated probe: is designed for electrical measurement like electrostatic force microscopy. 
  • Diamond-like carbon coating: enhance the durability of the tip and is designed to perform many consecutive scans 

Here are some photographies from the training day: 

Figure 1: Change of Tip for AFM Measurement in Bruker Dimension Edge 

Figure 2: Responsible researcher placing the tip in the AFM equipment 


Figure 3:  Getting the sample inside (gold nanoparticles deposited on glass substrate) 

December 09, 2019

AFM training: Bruker Dimension Edge at IFUAP

Responsible research: Dr. Francisco Flores 
Day: 1

First training day on AFM Bruker Dimension Edge AFM at the Physics Institute of BUAP. This equipment will allow the measurement of topography properties like roughness and grain size. The researcher in charge explains too that it's possible to acquire electrical conductivity and work function from the surface of the films. 


Model: AFM - Bruker Dimension Edge 

Close up of AFM equipment


Connection block card: National Instrument BNC 2110 

April 25, 2019

Paper: Identifying the Real Minority Carrier Lifetime in Nonideal Semiconductors: A Case Study of Kesterite Materials

Title: Identifying the Real Minority Carrier Lifetime in Nonideal Semiconductors: A Case Study of Kesterite Materials
Authors: Charles J. Hages,* Alex Redinger, Sergiu Levcenko, Hannes Hempel, Mark J. Koeper, Rakesh Agrawal, Dieter Greiner, Christian A. Kaufmann, and Thomas Unold*
Link: Adv. Energy Mater. 2017, 1700167 (Cited by 16)



Abstract:

Time‐resolved photoluminescence (TRPL) is a powerful characterization technique to study carrier dynamics and quantify absorber quality in semiconductors. The minority carrier lifetime, which is critically important for high‐performance solar cells, is often derived from TRPL analysis. However, here it is shown that various nonideal absorber properties can dominate the TRPL signal making reliable extraction of the minority carrier lifetime not possible. Through high‐resolution intensity‐, temperature‐, voltage‐dependent, and spectrally resolved TRPL measurements on absorbers and devices it is shown that photoluminescence (PL) decay times for kesterite materials are dominated by minority carrier detrapping. Therefore, PL decay times do not correspond to the minority carrier lifetime for these materials. The lifetimes measured here are on the order of hundreds of picoseconds in contrast to the nanosecond lifetimes suggested by the decay curves. These results are supported with additional measurements, device simulation, and comparison with recombination limited PL decays measured on Cu(In,Ga)Se2. The kesterite material system is used as a case study to demonstrate the general analysis of TRPL data in the limit of various measurement conditions and nonideal absorber properties. The data indicate that the current bottleneck for kesterite solar cells is the minority carrier lifetime.

Highlights:
  • PL decay times or TRPL do not correspond to the minority carrier lifetime for CZTSe
  • Processes which influence the TRPL decay are: 
    • Radiative and nonradiative recombination
    • Surface recombination
    • Carrier drift in an electric field
    • Absorber inhomogeneity
    • Material degradation
    • Minority carrier trapping  (capture and emission)
  • For kesterites, the connection between PL time decay and the assumed minority charge lifetime is not apparent. (For CdTe technology is correlated)
  • V-TRPL: In contrast to CIGSe the TRPL data of kesterites shows no dependence on voltage.  
Characterization techniques:
  • Steady-state PL (photoluminescence)
  • TRPL - Time-resolved photoluminescence is used to study carrier dynamics and quantify absorber quality in semiconductors: (Minority carrier lifetime and charge carrier density)
  • Intensity-dependent TRPL
  • Voltage-dependent TRPL
  • Temperature-dependent TRPL  

April 23, 2019

Paper: Complex Interplay between Absorber Composition and Alkali Doping in High-Efficiency Kesterite Solar Cells

Title: Complex Interplay between Absorber Composition and Alkali Doping in High-Efficiency Kesterite Solar Cells
Authors: Stefan G. Haass,* Christian Andres, Renato Figi, Claudia Schreiner, Melanie Bürki, Yaroslav E. Romanyuk, and Ayodhya N. Tiwari
Link (Open Acess): Adv. Energy Mater. 2018, 8, 1701760

Abstract:
Sodium treatment of kesterite layers is a widely used and efficient method to boost solar cell efficiency. However, first experiments employing other alkali elements cause confusion as reported results contradict each other. In this comprehensive investigation, the effects of absorber composition, alkali element, and concentration on optoelectronic properties and device performance are investigated. Experimental results show that in the row Li–Na–K–Rb–Cs the nominal Sn content should be reduced by more than 20% (relative) to achieve the highest conversion efficiency. The alkali concentration resulting in highest device efficiencies is lower by an order of magnitude for the heavy alkali elements (Rb, Cs) compared to the lighter ones (Li, Na, K). Utilization of a wide range of characterization techniques helps to unveil the complex interplay between absorber composition and alkali doping. A ranking of alkali for best device performances, when employing alkali treatment, resulted in the order of Li > Na > K > Rb > Cs based on the statistics of more than 700 individual cells. Finally, a champion device with 11.5% efficiency (12.3% active area) is achieved using a high Li concentration with an optimized Sn content.

Highlights:
  • Best published solar cell CZTSe: 12.6 % by IBM and DGIST (0.4 - 0.5 cm2 active area)
  • Solution process deposition technique [14]
  • The secondary phase Sn(S,Se)2 can be identify from XRD when Sn nominal content is > 33.3% 
  • The formation of the second phase tin selenide is influenced by the type of concentration of alkali elements 
  • Minority carriers trapping, surface effects and energetic relaxation of carriers has been identified to severely affect the PL transition times. Thus the measurement of transition decay times does not represent the real minority carriers lifetime in the kesterite absorber layer. 
    • The champion solar cell has high Li content (3.3%) and 33.3% of Sn nominal concentration of 33.3 %.  11.55 % with metal electrodes and 12.3 without a metal grid. Area = 0.29 cm2. 
  • A ranking of best device performances employing alkali treatment resulted in the order of Li > Na > K > Rb > Cs based on the statistics of more than 700 individual cells. 
Characterization techniques: 

 Material 
  • ICP-MS (Inductively coupled plasma-mass spectroscopy), detect alkali content in the absorber layer.
  • SEM (Scanning electron microscopy)
  • XRD (X-ray diffraction): To understand the device performance reduction at high Sn content
  • XRF (X-ray fluorescence)
Solar cell 
  • JV (current-voltage)
  • C-V (capacitance-voltage): Apparent carrier concentration and depletion region width.
  • TRPL (Time-resolved photoluminescence): 639 nm pulse diode laser , 90ps pulse width and 10 MHz 
  • EQE (External quantum efficiency)

April 22, 2019

Paper: How small amounts of Ge modify the formation pathways and crystallization of kesterites

Ge incorporation on Kesterites

Title:
How small amounts of Ge modify the formation pathways and crystallization of kesterites
Authors: S. Giraldo, E. Saucedo, M. Neuschitzer, F. Oliva, M. Placidi, X. Alcobe´, V. Izquierdo-Roca, S. Kim, H. Tampo, H. Shibata, A. Pérez-Rodríguez and P. Pistor

Link: Energy Environ. Sci., 2018, 11, 582-593

Abstract: 


The inclusion of Ge into the synthesis of Cu2ZnSn(S,Se)4 absorbers for kesterite solar cells has been proven to be a very efficient way to boost the device efficiency in a couple of recent publications. This highlights the importance to elucidate the mechanisms by which Ge improves the kesterite solar cells properties to such a large extent. In this contribution, we first show how controlling the position and thickness of a very thin (10–15 nm) layer of Ge greatly influences the crystallization of kesterite thin films prepared in a sequential process. Typically, Cu2ZnSnSe4 (CZTSe) films form in a bi-layer structure with large grains in the upper region and small grains at the back. By introducing Ge nanolayers below our precursors, we observe that large CZTSe grains extending over the whole absorber thickness are formed. Additionally, we observe that Ge induces fundamental changes in the formation mechanism of the kesterite absorber. In a detailed analysis of the phase evolution with and without Ge, we combine the results of X-ray fluorescence, X-ray diffraction, and Raman spectroscopy to demonstrate how the Ge influences the preferred reaction scheme during the selenization. We reveal that the presence of Ge causes a large change in the in-depth elemental distribution, induces a stabilizing Cu–Sn intermixing, and thus prevents drastic compositional fluctuations during the annealing process. This finally leads to a change from a tri-molecular towards, mainly, a bi-molecular CZTSe formation mechanism. Kesterite thin films with surprisingly large crystals of several microns in diameter can be fabricated using this approach. The results are related to the increase in device performance, where power conversion efficiencies of up to 11.8% were obtained. Finally, the consequences of the disclosed crystallization pathways and the extension to other chalcogenide technologies are discussed

Highlights:

  • Kesterite solar cell record efficiency of 12.6% (2018) [1]
  • Advantages like earth abundant and non-toxic materials of CZTSe will success if the technology reaches 20% efficiency and be ready for industrial manufacturing. 
  • Disadvantages: Low Voc (Open circuit voltage is an indirect measurement of the recombination process of the solar cell, following Shockley design). 
    • Potential fluctuations
    • Band tailing
    • Disorder defects 
    • Interface recombination 
    • Secondary phases 
    • Compositional inhomogeneities
  • The presence of Ge drastically modifies the reaction pathway in which the kesterite is formed
  • The beneficial effects of Ge incorporation are not limited to some surface modifications it affects the whole bulk of the absorber. 
  • The observed improvement should be located on the absorber bulk due to an increase in the charge carrier lifetime. 

Characterization Techniques:

  • Materials
    • SEM (5 keV) 
    • Thickness by SEM (2µm of the absorber layer)
    • EDX (20 kV)
    • XRS (Brag-Brentano configuration, 4-145º, step 0.017º, )
    • Raman (excitation wavelengths: 633 nm, 532 nm, 488 nm )
    • XRF (X-ray fluorescence) to determine overall composition and thickness
  • Solar cell
    • JV curve (Standard parameters)
    • EQE (Increase due optimization at the bulk of the absorber)
    • Voc vs T  (Activation Energy of recombination process)

Relevant information:

  • Heat treatment to induce grain growth is crucial for a better solar cell. Then Ge assisted crystallization process affect the whole bulk absorber. 
  • Goal: Increase Voc on the device is the challenge to increase efficiency > 12%. 
  • Goal: Detect the dominant recombination mechanism.


Disclaimer: The intention of this post is to bring some personal notes of the literature review. I'm not sharing the PDF files. For that purpose, please ask the authors or follow the link to the journal. 

Review of the STARCELL project publications

 This project is developed in the European Union due to photovoltaics is one of the main technologies necessary to achieve the targets of EU Energy Roadmap 2050.  For me, it is interesting to know the state of the art of this material as a prospect for a postdoctoral stay in 2019-2020.

  • This topic is highly related to solar cell development and innovation.
  • One key feature is the development of thin film photovoltaics using flexible substrates



Webpage Snapshot (April 22nd, 2019) - STARCELL Project 

STARCELL aims to substitute two critical raw materials (In and Ga) used in conventional thin film photovoltaic (PV) technologies, via the introduction of sustainable kesterite (Cu
2ZnSn(S,Se)4 - CZTSSe) semiconductors. (Project STARCELL Objective)

Publications:


[1] S. Giraldo, E. Saucedo, M. Neuschitzer, F. Oliva, M. Placidi, X. Alcobé, V. Izquierdo-Roca, S. Kim, H. Tampo, H. Shibata, A. Pérez-Rodríguez, P. Pistor, How small amounts of Ge modify the formation pathways and crystallization of kesterites, Energy Environ. Sci. 11 (2018) 582–593. doi:10.1039/c7ee02318a. (Link)(Cited by 22)

[2] S.G. Haass, C. Andres, R. Figi, C. Schreiner, M. Bürki, Y.E. Romanyuk, A.N. Tiwari, Complex Interplay between Absorber Composition and Alkali Doping in High-Efficiency Kesterite Solar Cells, Adv. Energy Mater. 8 (2018) 1–9. doi:10.1002/aenm.201701760. (Link) (Cited by 11)


[3] C.J. Hages, A. Redinger, S. Levcenko, H. Hempel, M.J. Koeper, R. Agrawal, D. Greiner, C.A. Kaufmann, T. Unold, Identifying the Real Minority Carrier Lifetime in Nonideal Semiconductors: A Case Study of Kesterite Materials, Adv. Energy Mater. 7 (2017) 1–10. doi:10.1002/aenm.201700167. (Link) (Cited by )


[4] J. Márquez, H. Stange, C.J. Hages, N. Schaefer, S. Levcenko, S. Giraldo, E. Saucedo, K. Schwarzburg, D. Abou-Ras, A. Redinger, M. Klaus, C. Genzel, T. Unold, R. Mainz, Chemistry and Dynamics of Ge in Kesterite: Toward Band-Gap-Graded Absorbers, Chem. Mater. 29 (2017) 9399–9406. doi:10.1021/acs.chemmater.7b03416. (Link