This tip is useful for engineering and science bloggers who want to share their knowledge on the web. Here is the way I found. I recently tested it on the blogger system, the purpose is to share science tutorials with you using the correct math way.
Let's do it!
|
Draft on paper of the Debye-Scherrer equation for crystal size calculation |
|
Step 1: Add a new gadget to your blog and copy and paste the following
script.
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
Step 2: Write code in a new post following using latex language inside:
- Inline \( latex code here \)
- Paragraph \[ latex code here \]
Step 3: Equation test: Debye -Scherrer for crystal size calculation
\[ D(\text{nm}) = \frac{0.9 \lambda}{\beta\cos{\theta}} \]
- D: Crystal size
- \(\lambda\) : 0.15406 nm X-Ray wavelength
- \(\beta\) : FWHM in radians (Full width at half maximum)
- \(\theta\) : Angle location of the peak in radians.
\[ x = {-b \pm \sqrt{b^2-4ac} \over 2a} \]
- Cauchy's Integral Formula
\[ f(a) = \frac{1}{2\pi i} \oint\frac{f(z)}{z-a}dz \]
- Angle Sum Formula for Cosines
\[ \cos(\theta+\phi)=\cos(\theta)\cos(\phi)−\sin(\theta)\sin(\phi) \]
- Gauss' Divergence Theorem
\[ \int_D ({\nabla\cdot} F)dV=\int_{\partial D} F\cdot ndS \]
\[ \vec{\nabla} \times \vec{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \mathbf{i} + \left( \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) \mathbf{j} + \left( \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \mathbf{k} \]
\[ \sigma = \sqrt{ \frac{1}{N} \sum_{i=1}^N (x_i -\mu)^2} \]
- Definition of Christoffel Symbols
\[ (\nabla_X Y)^k = X^i (\nabla_i Y)^k = X^i \left( \frac{\partial Y^k}{\partial x^i} + \Gamma_{im}^k Y^m \right) \]